絕大多數合金元素加入低碳鋼,是為了生產在某些環境溫度下的固溶體硬化鋼,提高晶格摩擦應力δi。但目前還不能僅用公式預測較低屈服應力,除非已知晶粒尺寸。雖然屈服應力的決定因素是正火溫度和冷卻速度,然而這種研究方法仍很重要,因為可以通過提高δi預測單個合金元素可降低韌性的范圍。
鐵素體鋼的無塑性轉變(NDT)溫度和夏比轉變溫度的回歸分析至今尚無報導,然而這些也僅限于加入單個合金元素對韌性影響的定性討論。以下就幾種合金元素對鋼性能的影響作簡要介紹。
1)錳。絕大多數的錳含量約為0.5%。作為脫氧劑或固硫劑加入可防止鋼的熱裂,在低碳鋼中還有以下作用。
含碳量0.05%鋼,空冷或爐冷后有降低晶粒邊界滲碳體薄膜形成的趨勢。
可稍減小鐵素體晶粒尺寸。
可產生大量而細小的珠光體顆粒。
前兩種作用說明NDT溫度隨著錳量的增加而降低,后兩種作用會引起夏比曲線峰值更尖。
鋼含碳量較高時,錳能顯著降低約50%轉變溫度。其原因可能是因珠光體量多,而不是滲碳體在邊界的分布。必須注意的是,如果鋼的含碳量高于0.15%,高錳含量對正火鋼的沖擊性能影響起到了決定性作用。因為鋼的高淬透性引起奧氏體轉變成脆性的上貝氏體,而不是鐵素體或珠光體。
2)鎳。加入鋼中的作用似錳,可改善鐵-碳合金韌性。其作用大小取決于含碳量和熱處理。在含碳量(約0.02%)很低的鋼中,加入量達到2%就能防止熱軋態和正火鋼晶界滲碳體的形成,同時實質降低開始轉變溫度TS,升高夏比沖擊曲線峰值。
進一步增加鎳含量,改善沖擊韌性效果則降低。如果這時含碳量低至正火后無碳化物出現時,鎳對轉變溫度的影響將變得很有限。在含碳約0.10%的正火鋼中加入鎳,最大的好處是細化晶粒和降低游離氮含量,但其機理目前尚不清楚。可能是由于鎳作為奧氏體的穩定劑從而降低了奧氏體分解的溫度。
3)磷。在純凈的鐵-磷合金中,由于鐵素體晶界會發生磷偏析降低了抗拉強度Rm而使晶粒之間脆化。此外,由于磷還是鐵素體的穩定劑。所以,加入鋼中將大大增加δi值和鐵素體晶粒尺寸。這些作用的綜合將使磷成為極其有害的脆化劑,發生穿晶斷裂。
4)硅。鋼中加硅是為了脫氧,同時有益于提高沖擊性能。如果鋼中同時存在錳和鋁,大部分硅在鐵素體中溶解,同時通過固溶化硬化作用提高δi。這種作用與加入硅提高沖擊性能綜合的結果是,在穩定晶粒尺寸的鐵-碳合金中按重量百分比加入硅,使50%轉變溫度升高約44℃。此外,硅與磷相似,是鐵素鐵的穩定劑,能促進鐵素體晶粒長大。按重量百分數計,硅加入正火鋼中將提高平均能量轉換溫度約60℃。
5)鋁。以合金和脫氧劑的作用加入鋼中有以下兩方面的原因:第一,與溶體中的氮生成AlN,去除游離氮;第二,AlN的形成細化了鐵素體晶粒。這兩種作用的結果是,每增加0.1%的鋁,將使轉變溫度降低約40℃。然而,當鋁的加入量超過了需要,“固化”游離氮的作用將變弱。
6)氧。鋼中的氧會在晶界產生偏析導致鐵合金晶間斷裂。鋼中氧含量高至0.01%,斷裂就會沿著脆化晶粒的晶界產生的連續通道發生。即使鋼中含氧量很低,也會使裂紋在晶界集中成核,然后穿晶擴散。解決氧脆化問題的方法是,可加入脫氧劑碳、錳、硅、鋁和鋯,使其和氧結合生成氧化物顆粒,而將氧從晶界去除。